
OF THE NULTIRESPONS.. (U) FLORIDA UNIV GRINESVILLENUCLEAR SCIENCES CENTER A C MIJESINHR ET RL. RUG 86

UNCLRSSIFIED 244 NSSSI4-86-K-SS59 F/G 12/1

EhllllEEllEE



m211 111112.

L 13611111 '' L. 111112.0~

11111-L25 _L 11K6

MICROCOPY RESOLUTION TEST CHART

N AIINAT ,I A. A ANTA.

1*

Ir 
r.*e



SECURITY CLASSIFICATION ')F THIS PAGE (When Dli fnteed)

REPORT DOCUMENTATION PAGE READ INSTRUCTIYN
REPORTDOCUMENTATIONPAGE IHEFORE COMPLETING FORM

REPORT NUMBER 2 GOVT ACCESSION NO. 3 RFCIPIENT'S CATALOG NUMBER

244 _ _ _ _ _ _ _

4 TITLE (&nd Subtite) S T',P OF REPORT & PERIOD COVERED

Construction of Optimal Designs to

Increase t';e Power of the Multiresponse --6 PERFORMING ORG REPORT NUMBER

Lack of Fit Test.
7. AuTHOR(#) 8 CONTRACT OR GRANT NUMBER(e)N00014-86-K-00 59
M. C. Wijesinha and A. I. Khuri 

R&01482--0l
R&T 4114552 --- 01
Acct. No. 49101623459

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT. PROJECT. TASK

Department of Statistics 
AREA 6 WORK UNIT NUMBERS

Nuclear Sciences Center,"University of Flrida.

Gainesville, FL. 32611.
II. CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE

office of Naval Research August 1986
Mathematical Sciences Division(Code 411) 13 NUMBER OF PAGES

Arlington, VA. 22217-5000. 22
14 MONITORING AGENCY NAME a ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of thil report)

LO Unclassified-" N

Im DFCL ASSIFIC ATI-)N DOWNGRADING0. HEDULL

N 16 DSTRIBUTION STATEMENT (of this Report)

Approved for Public Release: Distribution Unlimited

DTIC
17 ), STRR,- jTCIQNSTATE,-- -- 4e .bf- ... d In ,.,. -- 0, t - "' """ ) -. - -- Ti ';.

AUG 1 11986

I8 SUPPLEMENTARY NOTEI B

19 KEY WORDS '-Or0II1 . r e ie, alde It h0 .... wy and 1denIifv lv bI,-h ,.,rh*,,

" ~Multiresponse desiqn, Multivariat' lack of fit test.

|CL

i 20 ABSTRACT ,Continu ,,n 1- old- If nec..e , al d Idenfify by bl, k ibe,

__ This paper introduces two design criteria to improve the

,L ~t.power of the multivariate lack of fit test for a linear

multiresponse model. An allorithim is presented for the

generation of optimal designs on the has;is of these criteria.

DD I JAM 147 FDI'TION OF I NOV 6S IS OBSOLETE t~n Li i f icc]

SLCURITY CLASSIFI(ATION OF THIS PAGE (W 7en D.te EnteredI

.. . . . . -6.



-.] -- , . - - . . - . . _

CONSTRUCTION OF OPTIMAL DESIGNS TO INCREASE THE POWER

OF THE MULTIRESPONSE LACK OF FIT TEST

M. COORAY WIJESINHA and ANDRE' 1. KHURI

Department of Statistics

University of Florida

Gainesville, Florida 32611

U.S.A.

*Abstract: Two design criteria are introduced to improve the power of the

multivariate lack of fit test for a linear multiresponse model. These

criteria are extensions of the A I and A2 -optimality criteria discussed by

"* Jones and Mitchell (1978) for the single-response case. A procedure is

presented for the generation of an optimal design based on the A 2-

criterion.

AMS Subject Classification: Primary 62K05; Secondary 62F03.

Key words and phrases: Multiresponse design; A1 -optimality; A2 -optimality;

Multivariate lack of fit test.

1. Introduction

Detection of model inadequacy is an important consideration in the

modeling of a multiresponse function. Khuri (1985) developed a multivariate

test for lack of fit for a linear multiresponse model. The test provides a



comprehensive assessment of the adequacy of all the single-response functions

associated with the multiresponse model. He also gave a procedure for

determining which responses are responsible for lack of fit when the lack of

fit test is significant.

In Section 2 we introduce some notation and briefly discuss Khuri's

(1985) lack of fit test. In Section 3 we develop two design criteria, A1 and

A.,-optimality, to increase the power of this test. In Section 4 an iterative

procedure developed by Silvey (1980) is used to obtain A2-optimal designs.

Numerical examples are presented in Section 5.

2. The Multiresponse Lack of Fit Test

2.1 Notation

Let N be the total number of experimental runs and r be the number of

responses. We assume that each response depends on all or some of k

controllable variables denoted by xlx 2,...,x k . The fitted ith response model

is represented as

E(Yi) = X 8., i = 1,2,...,r, (1)a -i M-il

where Y i is an Nxl vector of observations on the ith response, Ea (Y) denotes

the expected value of Yi under the fitted model, Xi is an Nxpi matrix of rank

pi of known functions of the settings of the controllable variables, and Ai is

a pixl vector of unknown parameters (i=1,2,...,r).

We suppose that the model for the true ith response mean (i=1,2,...,r) is

of the form %

Et(Xi) = ii + Zpji, i=1,2,...,r, (2)

where Et(Xi) denotes the expected value of Y under the true model, is an

Nxqi matrix of known functions of the settings of the controllable variables,

-2-
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and is a vector of unknown parameters. If the fitted model (1) is correct,

then Xi will be equal to the zero vector.

The models given in (1) and (2) can be expressed as

Ea(Y) - (3)

E () + U, (4)

where Y = [Y::...:Yr], X = [= [ l:Z 2 :...:Zr]- y2:'rl 4 1 1:42 : ... :Xr1 -r

B= diag(81,82,...'r , and r = diag(l, 2,.. .,yr). The matrices X, ,

and Z are of orders Nxr, Nxp, Nxq, pxr, and qxr, respectively, where
r r

P Pip = qi, and X is of rank p (<p). The rows of Y are

independent observations from multivariate normal populations with a common

nonsingular variance-covariance matrix of order rxr. Under the crue model,

has a mean given by (4) and a variance-covariance matrix I & E.

For the development of the lack of fit test we assume that replicated

observations are available on all r responses at some points in the

experimental region. Without loss of generality, it will be assumed that such

replicated observations are obtained at each of the first n design points,

where 1 < n < N. The number of repeated observations at the ith design point

is denoted by vi (Vi > 2, i = 1,2,...,n) and the total number of repeated

n
observations isv = v v".

J1 i

2.2 Khuri's (1985) Lack of Fit Test

Let Z0 denote the matrix which consists of the columns of X that

correspond to all distinct terms in the r fitted models given in (1). The

columns of )0 span the column space of X. We, therefore, consider that X is

of full column rank equal to p, the rank of X. Khuri (1985) developed a

multivariate lack of fit test for the multiresponse model (3) using

-3-. . . -. .
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emax(GG 2-), the maximum eigenvalue of the matrix Q1Q2
- 4, as a test

statistic, where

-(N7 (MX X KIY

(5)

2= MY.

In the above equations, diag( 1,K2,...,K nO) is of order NxN with

being a zero matrix of order (N-v)x(N-v) and Ji - (i/v )Ji , where IV , is

the identity matrix of order v xvi and ;V is the matrix of ones of order
i i

vixvi (i=1,2,...,n). Three other test statistics can also be employed to test

lack of fit; they are: (1) Wilks's likelihood ratio, 1G2 1/1Gl+ 2I; (2)

Pillai's trace, tr [CJ(Gj+ G2) 1; and (3) Hotelling-Lawley's trace,
-12

tr (GI2-2), where and tr denote the determinant and the trace of a

matrix, respectively.

3. Development of Design Criteria

It is known that G2 has the central Wishart distribution with
n

VPE = E(v - 1) degrees of freedom; 2, is independent of 2 and has the

noncentral Wishart distribution with vLF (N-p-vPE) degrees of freedom and a

noncentrality parameter matrix given by

= X-L[N- XO (Ki) z. (6)

The power of the lack of fit test, based upon any of the four multi-

variate test statistics mentioned earlier, is a monotone increasing function

of the eigenvalues of Q (see Roy et al. 1971, p. 68). Therefore, the power of

this test can be increased by increasing the trace of S. However, the choice

of the design which maximizes the trace of depends on the matrices and

which are unknown. Thus, we are faced with the problem of finding an

-4-
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expression independent of . and which, when maximized, results in an

increase in the trace of S. This expression is found as follows: It is easy

to show that

tr(Q) > emin(z - 1 ) tr[r z, 11NX( 6 0) -1 X}Zr], (7)

where emin denotes the smallest eigenvalue of the matrix inside parentheses.

Inequality (7) can be rewritten as (see the Appendix)

tr(sl) e. (E 1 )LI~)y (8)

where

= [: r (9)

L = d{ H x x X)'xZ (10)

In (10), ;0 is a matrix of order Nxp (pl<q) whose columns form a basis for

the column space of Z = [.1:Z2 :
' '.:Z] " Thus,

Z, Z0 H, i = 1,2,... ,r, (12)

where Ii is matrix of order plxqi.

Since emin( -') is a constant, the maximization of the quantity

A = (1 (I A) L-y (13)

will result in an increase in the trace of . Still, however, the choice of

design to maximize A depends on X which is unknown. In order to overcome this

problem we apply the maximin method proposed by Atkinson and Fedorov (1975)

and used by Jones and Mitchell (1978) in the single-response case. The

maximin method consists of choosing a design which maximizes A,, the minimum

of A with respect to I over a specified region i in the I-space. The

specification of the region r depends on a quantity T considered a a measure

-5-



of the inadequacy of the fitted model and is defined as follows: Suppose the

uth rows of Xi and ki (i=1,2,...,r; u=1,2,...,N) in (2) can be represented as

f(x ) and '(x), respectively, then the fitted and true response functions

associated with (1) and (2) are f'(x)O and f(x)$i + &(x)y. (i = 1,2,...,r),
-i '- ; A - -1 1- -

respectively. We express T as T = ):TY, where

T = diag(l,1 2 ,...,r) (14)

i i i-li i
with T 22- 2 1 1) 12 and the i k(k, k = 1,2) are the region moment

i i

matrices defined by i Sf fi(x)fi(x)dx, y= Sf L~(?)ZiQ)dx,
X X

t i = S( x fZ(x)Z()dx, where S- 1= f
S (21 = ()f(x)dx , and p22 w dx and xE21 ~ ~22
X X X

denotes the experimental region. This is a multiresponse extension of the

expression for T given by Jones and Mitchell (1978). It is a measure of the

inadequacy of the fitted models given in (1) and is positive whenever the

fitted model is inadequate, otherwise, it is equal to zero.

3.1 A1-Optimality

If the fitted model is inadequate, then T >6 for some constant 6 > 0. We

define = y:y'Ty > 61. The first design criterion is to maximize A1 where

A1  inf £YL(i 0 A) L'1 (15)

This is a multiresponse extension of the A1-optimality criterion proposed by

Jones and Mitchell (1978). As in Jones and Mitchell (1978), A, can be

expressed as

Al = 6 ein{T- 1(LI @ A)L'I. (16)
A design which maximizes emin L(I A)L'} is called a A-optimal

-mn[ - -r ~ - I-

design. Note that there are situations in which e I
@ A)L'j is equal

-6-
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to zero for any choice of design. This occurs, for example, when r(N-p) < q,

r
where p is the number of columns of 40 and q = J, q, is the number of columns

in . in (4), or the number of rows of the matrix J, in (11). In this case the
-l

rank of the qxq matrix T L(I r A)LW is less than or equal to r(N-p) which is

less than q. This matrix is, therefore, singular. Thus, A,-optimal designs

can only be obtained under certain conditions. This leads us to propose a

second design criterion which can be applied in more general situations.

3.2 A2-Optimality

Our second design criterion is to maximize A2, the average of A (instead

of the minimum of A) over the contour T = 6, i.e., we propose to select a

design which maximizes

A2 =f Z'(lr 9 A)L'I dG/ f dG, (17)
7 0 i 0

where dG is the differential of the area on the surface of the ellipsoid

WO {-:yT' y 61. Using an identity stated in Jones and Mitchell (1978, p.

544) we have that

A2 = q 6 A', where A' = tr{T- @ A)L1. (18)
22' 2 r~L~

A design which maximizes A2 , or A', is called a A2 -optimal (A'-optimal)

design. Since q and 6 are constants it is clear that A2-optimal designs and

A'-optimal designs are equivalent. We note that the A2-optimality criterion

amounts to maximizing the sum of the eigenvalues of T IL(I r A)L'; hence, it

can be applied even when this matrix has a zero eigenvalue.

If the number of design points, N, is fixed beforehand, a A2-optimal

design can be obtained by maximizing AI with respect to the Nk design setting

(coordinates of the N design points). However, this may lead to computational

difficulties especially for large values of N or k. Therefore, an iterative

i -7-



procedure by which design points can be chosen one at a time would be quite

desirable. In the next section we develop such a procedure by using single-

response optimal design theory.

4. The Generation of A'-Optimal Designs

4.1 Design Theory

Consider the single-response model

E(yx) h'(x)e, (19)

where y denotes the response value at a point 4 = (x1 ,x2,...,Xk) , the

elements of the mxl vector h'(x) are functions of x1,x2,...,xk defined over

some experimental region X, a compact subset of the k-dimensional Euclidean

space, and Q is a vector of unknown parameters. We assume that Var(y ) 2 ,

Cov(y ,Y 0 for x, x , 2 in X(X * X). Let H be the set of all design
xl )=Oo2 -1 2  -1 --2

measures defined on X. Then the information matrix M(t), CsH , is defined as

M( f = h(x)h'(x)t(dx). (20)

The family of matrices,M = {M(0):CH, is convex (Silvey 1980, p. 16). By

Caratheodory's Theorem, for any design measure C, the matrix M(C) can be

represented in the form

s

M() = r A h(x )h'(x ), (21)
u=1 u~ - - ^1

where x tX (u = 1,2,...,s), s 4 m' = [m(m+l)/2] + 1, and 0 4 u 4 1 withIlu u

s

uE = 1 (see Silvey 1980, pp. 15-16). Thus, for a given M(r)EM and

mAU={ u 1 i

= = (A 2'2"' ) such that 0 < Xu  1 and E Xu= 1},

there exists a point w' = (A',x,x.,... x.) in Ux X m that is associated

with M(4). Note that in X, Xu = 0 for s < u 4 m'. If is a real-valued

function bounded from above onM , then a design measure * is said to be

-8-



0-optimal if

=sup 0[MG)I. (22)
Cc H

Silvey (1980, ch. 4) presented an iterative procedure to obtain 0-optimal

designs. The basic idea used in this procedure (Silvey 1980, p. 29) is as

follows: Suppose D N = {X, 2 .. X}represents an N-point discrete design

and he esin mesur obaind byattchig th mas X =1
an 4N is thNeinmaueotie b tahn h as)

(u = i,2,...,N) to each design point in D N' Start with an initial NI0-point

des.g suh hatO[( N ]>--. Once D N' hence N' N > NO, has been

determined, choose the design point xN± l such that

F- -N )h(N+ = suK F,{M( N),(x)h'(x)l, (23)

*where for M M mM , FO(MM i the Frechet derivative of Oat M, in the
-V 2 M2) 1

*direction of Mand is defined as

F (M1, 2  lim(I)[{1)M+c}- Q )] (24)

The procedure is stopped when suK F,IM(CN) h'~(x)} is less than some

small positive preset value for some N' No. This stopping rule is based on

* the following lemma (Silvey 1980, p. 22):

*Lemma 1. Let 0be concave on M and dif ferentiable on M 1- {M( O: )M

* and O[M(C)] > - o. Suppose a 0-optimal measure exists. Then ~*is

* 0-optimal if and only if

su F{(*) h(x)h'(x)} 0. (25)

The sequence of design measures (;N} defined in the iterative procedure

obeys the recursive formula

~N+1 N (c N N ~ ( N+1 (6

-9-
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where aN = I/(N+I) and (ZN+I denotes the design measure which assigns I to

the point 3N+I" Silvey (1980, pp. 35-36) shows that for such (aN} the

procedure converges.

Let us now consider the multiresponse model given in (3) and the A'-

*optimality criterion defined in Section 3.2. We shall apply Silvey's (1980)

procedure to construct A'-optimal designs. For this purpose let us consider

the matrices 40 and Zn, which are of orders Nxp and Nxop and appear in (5) and

(12), respectively. We introduce a single-response model of the form given in

(19) with h'(x) = fa'(x): b(x)], where a'(x) and b'(x) are vectors of

dimensions p and p, that represent a row of X0 and a corresponding row of ,

respectively, evaluated at a point A. The corresponding information matrix

for a discrete N-point design measure tN can be written asI1
M1XN) = (27)

MZX ( N )  M; ZZ CN3 1 
27

where MXX0 N) = X0/N, ZMxz0 N) =  /N, MZX0 N) = I /N, and

MZZN) = IN. The corresponding expression for AO in (18) can now be

written as a function of M( N) of the form

A'[M(CN)] tr[T'L{I @ A(1N)}L], (28)

where (N) = N[zz(N) - ZX(N x~Nxz In general, if is any

design measure defined on a compact subset, X, of the k-dimensional Euclidean

v space, then an extension of the Ai function in (28) when MXX(C) is nonsingular

is

-fi -1
A M I= tr(T-l {Lr g ( )} t1, (29)

where A(C) = MZ() - MX(OM1(OMxW and XX( ), MXZ(C), MZX(C), and

MZ(C) provide a partitioning of M(C) in (20) analogous to that of M( N) in

-10-

I -

. . . . .*. . . -,. - -. . ..- :....-....... ..... ...-.,)..- .. - . . ..... ...



.. '. : . -- -. -- . r r r r r Trvrr

(27).

If H is the set of all design measures on X and M is the set [ (O): EH,

then a real-valued function can be defined on M as

A'[M(C)] if MXX() is nonsingular (0

- otherwise.

In this respect, the problem of finding a A'-optimal design for a

multiresponse model is equivalent to finding a 0-optimal design for the

single-response model (19) with h'(x) = [a'(x): b'(x)I as was seen earlier.

The function 0 defined in (30) can be shown to satisfy conditions (i), (ii),

and (iii) described in Theorem 1. The proof of this theorem is given in

Wijesinha and Khuri (1985).

Theorem 1. Let M = {M(): M(OcIM and M1X(c) is nonsingular}. If A'[M(r)1

is defined as in (29), then

(i) a A'-optimal measure exists.

(ii) A' is concave on M.

(iii) A' is differentiable on M

If FA' denotes the Frechet derivative of A', then from Lemma 1 and
22

Theorem I we may conclude that a design measure * is A5-optimal if and only

if

SU FA 4 M( *), h(x)h'(x)} : 0,
2S 2

where h'(x) = fa'(x): b'(x)]. This result will be used to construct a A-

optimal design in an iterative manner, just like in Silvey's (1980) procedure

described in Section 4.1. First, we need to obtain an explicit expression for

FAj. This will be developed in the next theorem.

-11-
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Theorem 2. If H is the set of all design measures on X, then for rC H and

xcX we have

FA{() h(S)t'(x)} = tr[r-IL~l Lr @ [b(x) - v(x, )][t(x)
2

- A'[M(C)], (31)

where v(S, ) = MZX( )M( )a(?) and h(x) = [Z'(x):b'(x)]-.

Proof. For simplicity we shall write and h instead of M(;) and h(x). By

definition,

F(M, hh') = lim+(1/c){A'[M] - A'[M]},
2 +O

where M = (1-e)M + chh'. Recall that

^'[M] = tr[T- 1 {1 0 ( ZZ- ] ZX" XM )I

* Therefore,

FAI(M, hh') = lim+tr{T- L(Ir &)@ L, (32)+
2 E+O

where

E= '''{zz- Mz - z -zx(xxz}' (33)

and

*. But from Dykstra (1971), for a nonsingular matrix we have the following

identity:

A-1 A -1

(A + x x ) -1 = - 0

~0_01+ X' A-x
0o -0-

Thus, if we let A = (I-c)M and x 0 /2, we get

Ex I { (1-E)Mxx+ caa}-

-12-



cc( )2  - -(M-)) } aa'

where c 1 + [E/(1-)J aM - a. It follows that
'-1X -I -1 1 - 1 -aaM," -1

-(I-) - 1 - lc/t(I-c)IP, where t = 1 - c + ca' and P MXX M.~

From (33) we obtain

E-M z+ MzxMM + bb -M - -ba'1
- 'ZZ-Z-'XkXZ - -ZXIxx XX

- c/(l-c)} % ab' + {(1-)/t}t PMxz

+ (c/tMzPab" + (e/t)ba'PMxz + {c2 / (l-0)tL}ba'Pab ". (34)

From (32) and (34 we conclude that

FA.{M( ), h(x)h'(x)}
2

=tr [T -IL11r 0 bx ~ ,~~'x v(,)}' ]

Z -r

where v(x,C) = -ZX(CI x1 )a()-

4.2 An Iterative Procedure to Obtain a A'-Optimal Design

Let h(x) = [a'(x):b'(x)]' and let M(CN) , N 1 1, be defined as in (27).

The main steps of the iterative procedure for constructing a A'-optimal design

are:

1. Start with an initial design DNo (consisting of No points) for which

~YX(CN 0) is nonsingular.

2. Obtain the design point XNo+1 at which su FA.{M( N0), h(x)h(x)} is
0 - 2 0

*. attained.

3. Obtain DN +1 (hence N0+j ) by augmenting DN with XN0+1 .  Recall that
0 0 0 0

CN0+1 is the design measure obtained by assigning probability 1/(N 0+1) to

each design point in DNo+1.

-13-



4. Continue this process to find xNo+2, 3No+3,... , until

s F. {M(x), () } < c, (35)
-e 2 MN)

for some N ; No and c, where c is a small positive number chosen a priori.

5. Numerical Examples

Example 1. One of the main concerns in industry is the determination of

conditions on the controllable variables which lead to better yields and lower

costs. In a paper by Lind et al. (1960), the authors discussed a case study of

such a problem. They applied response surface techniques to a typical

chemical processing operation. Three controllable variables were considered;

they were x1 ,x2, and x3 which represent, respectively, the proportions of two

complexing agents, and the extraction pH level. The response variables were

Yl = percentage yield, Y2 = cost of materials (dollars per one kilogram of

product). The controllable variables were coded so that -Ixi1 (i=1,2,3).

The fitted models are given below

3
Ea(Yi) = 8i + £ 8 xj + 8 x x + 8tx x + 8 x x i = 1,2.a o J=1 ijj i12 1 2 113 1 3 i23 2 3'

If these models are inadequate, then it is necessary that the design be chosen

so that the experimenter can quickly and efficiently detect the presence of

lack of fit. In this case the design can be augmented with additional points

to allow the fitting of models with higher-order terms. If, however, no

significant lack of fit is detected, then the models can be used to determine

conditions on xlx 2, and x3 that lead to high yield-response values and low
p

cost-response values. Let us consider that the true model for each response

is of the second degree with all pure quadratic terms, i.e., x2 , x2, and x

1 2 , dx

(this model was reported to be adequate according to the study by Lind et al.,

1960).

-14-



The iterative procedure described in Section 4.2 was carried out using

two initial designs given in Tables 1 and 2. The augmented design points, the

F values, and the AA values are given in Tables 3 and 4. The figures
2

indicate that the procedure has been successful in reducing the FA' values to

a level very close to zero. A steady increase in the values of A' is also

seen. It is quite clear from these results that the choice of the initial

design has a significant effect on the location of the new design points as

well as on the rate of convergence of the procedure.

Example 2. In this example we consider a multiresponse experiment with

three responses, y, Y2' Y3, and three controllable variables, x1, x2 , x3,

coded so that -1 4 xi 1 1 (i=1,2,3) . The fitted models are

Ea(Y I  10 + 811xI + a13x 3 + 113x1x3

3
E(Y 2 ) 820 +ZE1 82 X + 82 1 3 X X3 + 82 1 1 x + 2

3

Ea(y 3) = 830 +j 113jxj"

The true models are considered to be

E (y)+=8 +a + 0 X 2 +8 2A
t 1 10 811X1 + 813x3 + 8113X1X3 + 1 133x13

3
2) != 00 1 82 j X,1+82 83 xlx 3 +02 1 1 x+8 2 3 3x3 +8 2 1 2x 1 x 2+8 22 3 x2 x3 +8 2 2 2 x2

3Et33  E2+6 w2+0 w2
Ey t 30+j=1a3jxj +312XIX2+0313XlX3+0323x2x3 +8 311 1 322-2 333 3

The initial design for this example is given in Table 5 and the augmented

design points are given in Table 6. As in Example 1, we can clearly see that

the proposed procedure has been effective in reducing the value

of su K F[AA[(CN_),h(x)h'(x)] to a level arbitrarily close to zero.

-15-
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Appendix

In this appendix we prove the inequality

~~~tr() ;o e min (Q - l )X' L Q r A)L''(AI

where

Lx[-l*,L2***..rJ = O :N-( -) Z0 and

.. =diag( ',B ....,..

Proof

tr[E'Z' {N OQOAO)-O}xla

r
Z yH'A Hiy.,

- [ H: :.-.-: Q]{LrA )[X :Y" ':" -,

Inequality (A.1) follows from the above equality and inequality (7).
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Table 1. Initial Design 1 (Example 1).

X1 12 13

1 1 -1 x

1. -. -0.

-18 1. -0.

0.4 -0. 0.

-0.2 0.680.

0.5 -1.0 ~

-1.0 0.7 I

-1.0 -1.0
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Table 3. The Augmented Design Points using Initial Design 1 (Example 1).

N N FAI [M(N ) , h(x)h'(x)] A' [M( N-I)

9 (-0.019,-6.008,-0.003) 67.4805 0.0000

10 ( 0.008,-0.001,-0.001) 4'.6655 6.6644

11 ( 0.006, 0.006, 0.011) 32.4011 10.7976

12 (-0.002, 0.002,-0.009) 22.3158 13.3860

13 C 0.007, 0.003, 0.016) 14.9971 14.9977

14 (-0.004, 0.011,-0.009) 9.5850 15.9737

15 ( 0.003, 0.012, 0.004) 5.5106 16.5279

16 (-0.001, 0.000,-0.005) 2.4048 16.7973

17 C 0.000,-0.002, 0.000) 0.0050 16.8726

-18 2:i



Table 4. The Augmented Design Points Using Initial Design 2 (Example1)

N X N su~ F A'tM( ), h(x)b'(x)] A' [M(; 1 )
x 2 N- 2 -N-1

8 (-1.000,-1.000,-1.000) 92.7738 0.0000

9 ( 0.880,-1.000, 0.280) 43.3311 2.1245

10 (-1.000, 0.891, 0.382) 40.6232 3.5374

11 (-0.241,-0.182,-0.089) 23.1349 4.7762

12 ( 0.902, 0.991, 0.881) 41.9346 6.6435

-13 (-0.140,-0.079,-0.040) 17.9048 7.2794

*14 (-0.139, 0.881,-1.000) 20.2792 8.4975

15 (-0.135,-0.060,-0.041) 12.8134 9.0801

*16 ( 0.878,-0.223,-1.000) 14.6284 9.8342

17 (-0.120,-0.061,-0.059) 9.5272 10.1154

18 (-0.124,-0.063,-0.058) 6.7563 10.6228

*19 (0.879, 0.900,-0.100) 11.9147 10.9438

*20 (-0.161,-1.000,-0.079) 5.7707 11.1739

*21 (-1.000,-0.019, 0.025) 5.0655 11.3401

22 (-0.120,-0.060,-1.000) 4.0475 11.4226

23 C0.920,-1.000, 0.890) 11.0403 11.5733

24 (0.883,-1.000,-1.000) 7.9772 11.5312

25 (0.043,-0.123,-0.043) 5.0573 11.5236

26 (0.045,-0.124,-0.045) 3.5450 11.6986

*27 (-1.000, 0.891,-1.000) 7.0004 11.8117

28 (-1.000,-1.000, 0.880) 10.2624 11.8081

*29 (-0.060,-0.120,-0.047) 4.1023 11.8672

30 (-0.100,-1.000,-0.040) 2.9559 11.9892

31 (-0.059,-0.119,-0.039) 2.4101 12.0441

32 (0.001,-0.009,--0.011) 1.0677 12.1065

*33 (-0.003,-0.004,-0.000) 0.0156 12.1256
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Table 5. The Initial Design for Example 2.

x I  x 2  x 3

0.5 -0.6 0.3

1.0 1.0 -1.0

0.8 0.7 -1.0

1.0 0.3 -1.0

0.4 0.6 0.7

0.5 -0.8 0.9

1.0 -1.0 0.4

-20-
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Table 6. The Augmented Design Points for Example 2.

N N M FAA( NI),h(x)h'(x)I A2[M(cN
2

8 (-1.000,-l.000,-1.000) 311006.8974 -0.0000

9 (-1.000, 0.880, 0.901) 496.1313 0.6116

10 (-1.000, 1.000,-1.000) 239.7514 0.8424

11 ( 0.620,-1.000,-1.000) 101.2637 4.0733

12 (-1.000,-1.000, 1.000) 132.6938 7.4027

13 C 1.000, 0.995, 1.000) 118.0638 8.5210

14 (-1.000,-1.00,-0.120) 74.6300 8.3795

15 C1.000,-1.000,-1.000) 45.3371 10.4716

16 (-1.000, 0.880, 1.000) 24.9710 11.6581

17 (-1.000,-1.000, 0.995) 21.1408 12.0597

18 (-1.000, 0.880,-1.000) 10.7567 12.1594

19 (-1.000,-1.000,-1.000) 8.2219 12.1818

20 ( 1.000,-1.000, 0.894) 38.5043 12.1063

21 ( 1.000, 1.000, 1.000) 27.2943 12.7122

22 ( 1.000,-1.000,-1.000) 13.3531 13.1270

23 (-1.000, 0.880, 1.000) 10.5090 13.2994

24 (-0.940,-1.000, 0.899) 5.3225 13.4066

25 ( 1.000, 1.000,-1.000) 23.0393 13.3929

26 (-1.000, 0.898,-1.000) 7.5010 13.8408

27 (-1.000,-1.000,-1.000) 5.2012 13.8770

28 ( 1.000,-1.000,-1.000) 10.8382 13.8495

29 ( 1.000,-1.000, 1.000) 25.5676 14.0416

30 ( 1.000, 1.000, 1.000) 15.4512 14.2208

31 (-1.000, 0.894, 1.000) 7.0110 14.3827

32 (-1.000,-1.000, 0.880) 5.9191 14.4395

33 (-1.000,-1.000, 1.000) 1.5645 14.4925

34 ( 1.000, 1.000,-1.000) 16.9589 14.3978

35 (-1.000, 1.000,-1.000) 10.7206 14.6391

36 (-1.000,-1.000,-1.000) 4.4119 14.7352

37 ( 0.910,-1.000,-1.000) 3.8760 14.7178

38 C 1.000,-1.000, 1.000) 16.9927 14.7342

39 ( 1.000, 1.000, 1.000) 11.9193 14.8585

40 ( 1.000, 1.000, 1.000) 1.8782 14.9712

41 (-1.000,-1.000,-1.000) 1.0772 14.9461

42 C 1.000,-1.000,-1.000) .01425 14.9103
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